Mengenal Matematika Dan Kegunaannya

Mengenal Matematika Dan Kegunaannya

Matematika Dan Kegunaannya
Mengenal Matematika Dan Kegunaannya - Matematika adalah salah satu ilmu yang sangat mengerikan bagi sebahagian orang yang pernah mengecap jenjang pendidikan di bangku sekolah, mengapa tidak semenjak awal kita belajar kita telah disuguhkan angka-angka, kode-kode, berbagai macam symbol dan berbagai macam bentuk cara atau metode penyelesaian yang terasa sangat rumit, selain itu guru matematika sering juga diberi julukan guru “Killer”, hal ini karena sebahagian guru matematika bersifat tegas, bertampang sangar dan guratan-guratan serta garis wajahnya kalau di lihat pakai kaca pembesar berbentuk akar pangkat atau rumus phytagoras, hehehe,,,! (Mohon Maaf Pak, Buk becanda).

Namun sedemikian menakutkan kah Matematika itu? “Tak Kenal Maka Tak Sayang, Tak Sayang Maka Tak Cinta”, mungkin ungkapan ini cocok diterapkan dalam masalah ini, jika kita mengenal apa itu matematika dan apa kegunaan sebenarnya maka fikiran yang menghantui kita selama ini akan hilang dan kita tidak akan negative lagi soal matematika tersebut.

Untuk mengetahui hal tersebut marilah kita simak penjelasan berikut ini.

A. Pengertian Matematika Menurut Para Ahli

1. Plato (427–347 SM)
Plato berpendapat, bahwa matematika itu adalah identik dengan filsafat untuk ahli pikir, walaupun mereka mengatakan bahwa matematika harus dipelajari untuk keperluan lain. Objek matematika ada di dunia nyata, tetapi terpisah dari akal. Ia mengadakan perbedaan antara aritmetika (teori bilangan) dan logistik (teknik berhitung) yang diperlukan orang. Belajar aritmetika berpengaruh positif karena secara tidak langsung memaksa yang belajar untuk belajar bilangan-bilangan abstrak. Dengan demikian matematika ditingkatkan menjadi mental aktivitas dan mental abstrak pada objek-objek yang ada secara lahiriah, yang tentunya mempunyai representasi yang bermakna.

2. Aristoteles (348–322 SM)
Aristoteles ikut berpendapat bahwa Ia memandang matematika merupakan salah satu dari tiga dasar yang membagi ilmu pengetahuan menjadi ilmu pengetahuan fisik, matematika, dan teologi. Matematika didasarkan atas kenyataan yang dialami, yaitu pengetahuan yang diperoleh dari eksperimen, observasi, dan abstraksi.

3. Andi Hakim Nasution (1982:12)
Andi Hakim Nasution memaparkan defenisi Matematika lebih pada sisi bahasa dimana beliau berpendapat bahwa, Istilah matematika berasal dari kata Yunani, mathein atau manthenein yang berarti mempelajari. Kata ini memiliki hubungan yang erat dengan kata Sanskerta, medha atau widya yang memiliki arti kepandaian, ketahuan, atau intelegensia. Dalam bahasa Belanda, matematika disebut dengan kata wiskunde yang berarti ilmu tentang belajar (hal ini sesuai dengan arti kata mathein pada matematika).

4. Sujono (1988:5)
Sujono mengemukakan beberapa pengertian matematika. Di antaranya, matematika diartikan sebagai cabang ilmu pengetahuan yang eksak dan terorganisasi secara sistematik. Selain itu, matematika merupakan ilmu pengetahuan tentang penalaran yang logik dan masalah yang berhubungan dengan bilangan. Bahkan dia mengartikan matematika sebagai ilmu bantu dalam menginterpretasikan berbagai ide dan kesimpulan.

5. Sumardyono (2004:28) 
Pada akhirnya Sumardyono memberikan penjelasan secara umum definisi matematika yang dapat dideskripsikan sebagai berikut, di antaranya:
  • Matematika sebagai struktur yang terorganisir. Matematika merupakan suatu bangunan struktur yang terorganisir. Sebagai sebuah struktur, ia terdiri atas beberapa komponen, yang meliputi aksioma/postulat, pengertian pangkal/primitif, dan dalil/teorema (termasuk di dalamnya lemma (teorema pengantar/kecil) dan corolly/sifat).
  • Matematika sebagai alat (tool). Matematika juga sering dipandang sebagai alat dalam mencari solusi pelbagai masalah dalam kehidupan sehari-hari.
  • Matematika sebagai pola pikir deduktif. Matematika merupakan pengetahuan yang memiliki pola pikir deduktif, artinya suatu teori atau pernyataan dalam matematika dapat diterima kebenarannya apabila telah dibuktikan secara deduktif (umum).
  • Matematika sebagai cara bernalar (the way of thinking). Matematika dapat pula dipandang sebagai cara bernalar, paling tidak karena beberapa hal, seperti matematika matematika memuat cara pembuktian yang sahih (valid), rumus-rumus atau aturan yang umum, atau sifat penalaran matematika yang sistematis.
  • Matematika sebagai bahasa artifisial. Simbol merupakan ciri yang paling menonjol dalam matematika. Bahasa matematika adalah bahasa simbol yang bersifat artifisial, yang baru memiliki arti bila dikenakan pada suatu konteks.
  • Matematika sebagai seni yang kreatif. Penalaran yang logis dan efisien serta perbendaharaan ide-ide dan pola-pola yang kreatif dan menakjubkan, maka matematika sering pula disebut sebagai seni, khususnya merupakan seni berpikir yang kreatif.
Berdasarkan dari berbagai pendapat para ahli tadi tentang matematika dapat kita simpulkan bahwa matematika adalah pengetahuan atau ilmu mengenai logika dan problem-problem numerik. Matematika menolong manusia menafsirkan secara eksak berbagai ide dan kesimpulan-kesimpulan.

B. Kegunaan (Fungsi) Pelajaran Matematika

Kegunaaan matematika yaitu :

a. Matematika sebagai pelayan ilmu yang lain.
Banyak ilmu-ilmu yang penemuan dan pengembangannya bergantung dari matematika.

Contoh :
1. Penemuan dan pengembangan Teori Mendel dalam Biologi melalui konsep propabolitas.
2. Perhitungan dengan bilangan imajiner digunakan untuk memecahkan masalah tentang kelistrikan.
3. Dalam ilmu kependudukan, matematika digunakan untuk memprediksi jumlah penduduk dll.

b. Matematika digunakan manusia untuk memecahkan masalahnya dalam kehidupan sehari-hari.

Contoh:
1. Memecahkan persoalan dunia nyata
2. Menghitung luas daerah
3. Menghitung laju kecepatan kendaraan
4. Mengunakan perhitungan matematika baik dalam pertanian, perikanan, perdagangan, dan perindustrian.

Depdiknas (2004) memaparkan fungsi matematika sekolah adalah sebagai salah satu unsur masukan instrumental, yang memiliki obyek dasar abstrak dan berlandaskan kebenaran konsistensi, dalam sistem proses belajar mengajar untuk mencapai tujuan sekolah.

Menurut Depdiknas (2004) tujuan umum diberikannya matematika di jenjang pendidikan dasar dan menengah adalah sebagai berikut.
  1. Mempersiapkan siswa agar sanggup menghadapi perubahan keadaan di dalam kehidupan dan di dunia yang selalu berkambang, melalui latihan bertindak atas dasar pemikiran logis, rasional, kritis, cermat, jujur, efektif dan efisien.
  2. Mempersiapkan siswa agar dapat menggunakan matematila dan pola pikir matematika dalam kehidupan sehari-hari., dan dalam mempelajari berbagai ilmu pengetahuan. Dengan demikian tujuan umum pendidikan matematika pada jenjang pendidikan dasar dan pendidikan menengah memberi tekanan pada penataan nalar dan pembentukan sikap siswa serta juga memberi tekanan pada keterampilan dan penerepan matematik.

C. Dasar-dasar Keterampilan Matematika

Wills J.B & Atkinson M.P (2007: 5) menjelaskan bahwa: Keterampilan kuantitatif sangat penting untuk berpartisipasi dalam masyarakat, dimana hasil kuantitatif sangat penting dalam keputusan-keputusan tentang kehidupan publik dan swasta, dan sosiolog memiliki kontribusi yang berpotensi penting untuk membuat pendidikan keaksaraan kuantitatif. Pembelajaran matematika merupakan salah satu pembelajaran yang mengupayakan siswa untuk memiliki keterampilan baik keterampilan kognitif maupun keterampilan afektif.

Arends dan Kilcher (2010: 1) menjelaskan: Umumnya siswa mengharapkan untuk memperoleh keterampilan intelektual yang kompleks diperlukan untuk menjadi sukses dalam pengetahuan siswa saat ini, hasil siswa yang tidak sama adalah tidak diterima oleh siswa.

Wertsch & Stone (Sutherland R, 2007: 1) menjelaskan: Anak-anak dapat mengatakan lebih dari yang disadari dan beberapa masukan untuk memahami apa yang dimaksud dengan apa yang dikatakan bahwa mereka mengembangkan keterampilan kognitif.

Penilaian keterampilan matematika siswa tergantung dari proses pembinaan selama proses pembelajaran berlangsung di kelas. Untuk menilai keterampilan siswa dalam menyelesaikan soal matematika diperlukan suatu arahan atau tujuan pembelajaran matematika. Hal ini menunjukkan bahwa keterampilan ditetapkan oleh pengajar sebelum melaksanakan proses pembelajaran sebagai standar penilaian keterampilan matematika.

Ebel RL, & Frisbie, DA. (1979: 378) menyatakan bahwa : Tes kinerja siswa adalah mendemonstrasikan keterampilan siswa dengan memanipulasi sasaran atau instrumen.
Untuk menyelidiki keterampilan matematika siswa di kelas dalam proses pembelajaran matematika, siswa akan belajar setiap bidang subyek utama matematika modern: aljabar, analisis, geometri, statistik, dan matematika terapan.

Dalam pembelajaran matematika, siswa akan mempelajari:
1). Bahasa matematika dan aturan-aturan logika.
2). Bagaimana ide kelompok matematika yang tepat.
3). Bagaimana membuktikan atau tidak membuktikan konjektur matematika.
4). Bagaimana untuk mengambil makna dari matematika pada halaman tertulis.
5). Cara menggunakan matematika untuk menggambarkan dunia fisik.

D. Peranan Matematika Dalam Masyarakat Dan Teknologi

Matematika memegang peranan yang cukup penting dalam kehidupan manusia. Banyak yang telah disumbangkan matematika bagi perkembangan peradaban manusia. Kemajuan sains dan teknologi yang begitu pesat dewasa ini tidak lepas dari peranan matematika.

1. Peranan matematika dalam teknologi
Matematika merupakan raja sekaligus pelayan bagi ilmu-ilmu lainnya. Berkembangnya teknologi informasi dan komunikasi sekarang ini tidak terlepas dari adanya campur tangan matematika. Sebagai contoh adalah penggunaan logika matematika sebagai dasar bahasa pemrograman, struktur data, kecerdasan buatan, sistem digital, basis data, teori komputasi, rekayasa perangkat lunak, jaringan saraf tiruan dan lainnya yang mempergunakan logika secara intensif. Selain itu, ada pula penggunaan lain dari matematika terhadap perkembangan TIK, yaitu penggunaan algoritma untuk menghemat ukuran file serta dalam pemrograman komputer, penggunan segitiga pascal dalam program turbo pascal, dan lain sebagainya. Masih banyak lagi sumbangan matematika dalam perkembangan TIK yang merupakan dasar ilmu komputer.

Boleh dikatakan landasan utama sains dan teknologi adalah matematika. Tapi apakah sumbangan matematika hanya untuk kemajuan sains dan teknologi saja? Apakah kita tahu kalau matematika juga ikut berperan dalam menentukan arah maupun isi pemikiran-pemikiran filsafat, dalam meruntuhkan dan membangun kembali ajaran-ajaran agama, dalam memberikan jawaban terhadap pertanyaan-pertanyaan mendasar tentang hakekat manusia dan dunianya.

“Segala sesuatu adalah bilangan-bilangan” demikian Pythagoras berfilsafat dengan menggunakan matematika. Mungkin kita akan bingung menafsirkan pernyataan tersebut. Tapi memang demikianlah filsafat, bukan filsafat kalau tidak membingungkan. Memang tampaknya yang diungkapkan Pythagoras tersebut tidak masuk akal, namun yang dia maksudkan bukannya tanpa arti sama sekali. Ia menemukan pentingnya bilangan dalam musik, dan hubungan yang ia bangun antara musik dan matematika terkenal dengan istilah matematika, seperti “nilai rata-rata harmoni” dan “progresi harmoni”.

Pythagoras menganggap bilangan-bilangan sebagai bentuk-bentuk, sebagaimana yang ada pada dadu atau kartu permainan. Kita pun masih mewarisinya hingga sekarang dengan menggunakan istilah seperti bilangan bujur sangkar atau bilangan berpangkat dua dan bilangan kubus untuk bilangan berpangkat tiga, yang tidak lain adalah istilah-istilah yang berasal dari Pythagoras. Ia pun menggunakan istilah bilangan segi empat, bilangan segitiga, bilangan piramida, dan sebagainya. Bilangan-bilangan itu sebetulnya mewakili jumlah batu kerikil yang digunakan untuk menyusun bentuk-bentuk yang bersangkutan.

Ternyata hal tersebut berhubungan dengan pandangan Pythagoras bahwa dunia ini bersifat atomis, dan menganggap tubuh terbentuk dari molekul-molekul yang terdiri dari atom-atom yang tersusun dalam berbagai bentuk. Dalam hal ini ia ingin aritmatika sebagai bidang studi yang menjadi dasar dalam ilmu fisika maupun estetika.

Penemuan terpenting dari Pythagoras adalah apa yang sudah sangat kita kenal dan sering kita gunakan dalam segitiga siku-siku yaitu Dalil Pythagoras. Jumlah kuadrat sisi-sisi yang membentuk sudut siku-siku sama dengan kuadrat sisi miringnya, demikian isi dalil yang terkenal tersebut. Tapi dalil tersebut sekaligus menjadi titik tolak ditemukannya dalil ketaksebandingan, yang mementahkan kembali seluruh filsafat Pythagoras. Karena teori aritmatika tidak cukup memadai mengenai ketaksebandingan, maka hal ini semakin meyakinkan para ahli matematika ketika itu, bahwa geometri harus disusun secara terpisah dengan aritmatika.

Dan sejak itu geometri mempunyai pengaruh yang besar terhadap filsafat dan metode ilmiah. Penalaran deduktif aksiomatis menjadi kunci utama dalam memahami pengetahuan. Ini membawa konsekuensi, Matematika tidak lagi mempelajari obyek-obyek yang secara langsung dapat ditangkap oleh indera manusia. Substansi matematika adalah benda-benda pikir yang bersifat abstrak. Dan jadilah matematika murni mendominasi.

Doktrin-doktrin mistik yang menyangkut hubungan antara waktu dan keabadian pun mendapat dukungan dari matematika murni, obyek-obyek matematika, seperti bilangan-bilangan, andaikata nyata sekalipun, sifatnya tetap abadi dan tidak lekang oleh waktu. Obyek-obyek abadi demikian dikonsepsikan sebagai pikiran Tuhan. Maka jangan heran jika muncul doktrin Plato bahwa Tuhan adalah ahli geometri. Agama rasionalistik yang berbeda dengan agama apokaliptik, semenjak Pythagoras, dan terutama semenjak Plato, telah sepenuhnya didominasi oleh matematika dan metode matematis.

Kombinasi matematika dan teologi, yang bermula dari Pythagoras, telah menanamkan ciri pada filsafat yang bercorak religius di Yunani, di Abad Pertengahan dan jaman modern hingga Immanuel Kant. Tetapi mulai era Plato dan Descartes terjadilah perpaduan yang mendalam antara agama dan penalaran, antara aspirasi moral dan sikap logika yang memuliakan segala yang baka. Hal ini tidak lepas dari pengaruh dominasi matematika murni kala itu.

2. Peranan matematika dalam masyarakat

Pentingnya matematika tidak lepas dari perannya dalam segala jenis dimensi kehidupan. Misalnya banyak persoalan kehidupan yang memerlukan kemampuan menghitung dan mengukur. Menghitung mengarah pada aritmetika (studi tentang bilangan) dan mengukur mengarah pada geometri (studi tentang bangun, ukuran dan posisi benda). Aritmetika dan geometri merupakan fondasi atau dasar dari matematika.

Untuk mengembangkan kemampuan berkomunikasi, orang dapat menyampaikan informasi dengan bahasa matematika, misalnya menyajikan persoalan atau masalah ke dalam model matematika yang dapat berupa diagram, persamaan matematika, grafik, ataupun tabel. Mengkomunikasikan gagasan dengan bahasa matematika justru lebih praktis, sistematis, dan efisien. Begitu pentingnya matematika sehingga bahasa matematika merupakan bagian dari bahasa yang digunakan dalam masyarakat.

Hal tersebut menunjukkan pentingnya peran matematika dalam masyarakat, terutama sebagai sarana untuk memecahkan masalah baik pada matematika maupun dalam bidang lainnya. Peranan matematika tersebut, terutama sebagai sarana berpikir ilmiah oleh Erman Suherman (1995: 56) disebutkan dapat diperolehnya kemampuan-kemampuan sebagai berikut

a. Menggunakan algoritma
Yang termasuk kedalam kemampuan ini antara lain adalah melakukan operasi hitung, operasi himpunan, dan operasi lainya. Juga menghitung ukuran tendensi sentral dari data yang banyak dengan cara manual.

b. Melakukan manipulasi secara matematika
Yang termasuk kedalam kemampuan ini antara lain adalah menggunakan sifat-sifat atau rumus-rumus atau prinsip-prinsip atau teorema-teorema kedalam pernyataan matematika.

c. Mengorganisasikan data
Kemampuan ini antara lain meliputi : mengorganisasikan data atau informasi, misalnya membedakan atau menyebutkan apa yang diketahui dari suatu soal atau masalah dari apa yang ditanyakan.

d. Memanfatkan simbol, tabel, grafik, dan membuatnya
Kemampuan ini antara lain meliputi : menggunakan simbol, tabel, grafik untuk menunjukan suatu perubahan atau kecenderungan dan membuatnya.\

e. Mengenal dan menemukan pola
Kemampuan ini antara lain meliputi : mengenal pola susunan bilangan dan pola bangun geometri.

f. Menarik kesimpulan
Kemampuan ini antara lain meliputi : kemampuan menarik kesimpulan dari suatu hasil hitungan atau pembuktian suatu rumus.

g. Membuat kalimat atau model matematika
Kemampuan ini antara lain meliputi : kemampuan secara sederhana dari fonemena dalam kehidupan sehari-hari kedalam model matematika atau sebaliknya dengan model ini diharapkan akan mempermudah penyelesaianya.

h. Membuat interpretasi bangun geometri
Kemampuan ini antara lain meliputi : kemampuan menyatakan bagian-bagian dari bangun geometri dasar maupun ruang dan memahami posisi dari bagian-bagian itu.

i. Memahami pengukuran dan satuanya
Kemampuan ini antara lain meliputi ; kemampuan memilih satuan ukuran yang tepat, melakukan estimasi, mengubah satuan ukuran ke satuan lainnya.

j. Menggunakan alat hitung dan alat bantu lainya dalam matematika, seperti tabel matematika, kalkulator, dan komputer.

Matematika bukan hanya bagian dari ilmu pengetahuan untuk menghitung sudut, panjang gelombang suara, dan teori pelik lainnya. Matematikan sebenarnya dasar konsep berpikir logis yang membantu kita menghitung kemungkinan, atau pro dan kontra, sehingga kita bisa memecahkan masalah dalam kehidupan. Hal inilah yang sebenarnya penting dipelajari oleh anak. Karenanya sejak dini anak perlu dibuat tertarik dan tidak terbebani ketika berhadapan dengan matematika.

Cara paling menarik untuk mengajarkan matematika adalah mengajak anak mengalaminya secara langsung. Anda bisa menemukan berbagai permainan yang didesain untuk mengembangkan keterampilan strategi, dan melibatkan kemampuan berpikir logis, contohnya ular tangga, atau monopoli.Mainan ini bisa dimainkan bersama oleh orang tua dan anak. Ketika ia mengalami masalah selama bermain, Anda bisa membantunya dengan memberikan contoh sehingga ia mendapatkan panduan menyelesaikan masalahnya

E. Rangkuman

1. Matematika adalah pengetahuan atau ilmu mengenai logika dan problem-problem numerik. Matematika menolong manusia menafsirkan secara eksak berbagai ide dan kesimpulan-kesimpulan.

2. Depdiknas (2004) memaparkan fungsi matematika sekolah adalah sebagai salah satu unsur masukan instrumental, yang memiliki obyek dasar abstrak dan berlandaskan kebenaran konsistensi, dalam sistem proses belajar mengajar untuk mencapai tujuan sekolah.

3. Peranan matematika dalam teknologi, yaitu Matematika merupakan raja sekaligus pelayan bagi ilmu-ilmu lainnya. Berkembangnya teknologi informasi dan komunikasi sekarang ini tidak terlepas dari adanya campur tangan matematika. Landasan utama sains dan teknologi adalah matematika

4. Peranan matematika dalam masyarakat, yaitu sebagai sarana berpikir ilmiah adalah dapat diperoleh kemampuan-kemampuan meliputi :

a. Menggunakan algoritma.
b. Belakukan manipulasi secara matematika.
c. Mengorganisasikan data.
d. Memanfaatkan simbol, tabel, grafik, dan membuatnya.
e. Mengenal dan menemukan pola.
f. Menarik kesimpulan.
g. Membuat kalimat atau model matematika.
h. Membuat interpretasi bangun geometri.
i. Memahami pengukuran dan satuanya.
j. Menggunakan alat hitung dan alat bantu lainya dalam matematika, seperti tabel matematika, kalkulator, dan komputer.

Itulah beberapa defenisi atau pengertian serta kegunaan dari Matematika dalam kehidupan, semoga dengan penjelasan ini kita bisa mengerti dan tidak menganggap matematika itu mengerikan lagi, (Tapi bagi saya tetap mengerikan... ;-) )
0 Komentar untuk "Mengenal Matematika Dan Kegunaannya"

back to top